Introduction to Nuclear Chemistry I

Prof. Cody Folden Folden@comp.tamu.edu April 14, 2014

Chart of the Nuclides

• The nuclear scientists' equivalent of the periodic table.

Chart of the Nuclides

Z=50

V=28

V=20

N=50

Z, number of protons

Z=28

7 = 20

Z=82

N=82

N=126

N. number of neutrons

Where are the different beta decay modes favored?

- Yellow: α
- Blue: β^+
- Purple: β^-
- Green: Spontaneous Fission

Example

• What is the activity of 1 kg of ²³²ThO₂ in decays per second (s⁻¹)? The half-life of ²³²Th is 1.40 × 10¹⁰ y and its atomic weight is 232.038 g/mol.

Radioactive Decay

How do you measure the half-life?

- The *half-life* $t_{1/2}$ is the time it takes for half a sample to decay away.
- How do you measure $t_{1/2}$?
- Start with: $A = A_0 e^{-\lambda t}$
- Re-arrange: $\ln A = -\lambda t + \ln A_o$
 - Measure *A* vs. time.
 - Plot the data.
 - Measure the slope. This is $-\lambda$. Calculate $t_{1/2} = (\ln 2)/\lambda$.
 - Measure the intercept. This is (ln A_o).

Our Very Existence

• There is a very important radioactive decay that you should know about:

$$n \rightarrow p + e^- + \overline{\nu} + \text{Energy}$$

- These protons are fused into heavier elements by stars, releasing energy in the process.
- Neutrons alone cannot make atoms. If the reaction ran in the opposite direction then there would be *no elements*.
- You owe your very existence to nuclear science!